Experimental and simulation-based investigations of marine diesel engine performance against static back pressure
نویسندگان
چکیده
After-treatment technologies are adopted in automobiles and ships to meet strict emission regulations, which increase exhaust back pressure. Furthermore, underwater exhaust systems are employed on board ships to save space, and reduce noise and pollution on working decks. However, water at exhaust outlet creates a flow resistance for the exhaust gases, which adds to the back pressure. High back pressure reduces the operating limits of an engine, increases fuel consumption, and can lead to exhaust smoke. While the effects of back pressure were recognized earlier, there is a lack of experimentally validated research on the performance limits of a turbocharged, marine diesel engine against high back pressure for the entire operating window. The focus of this research is to provide a comprehensive understanding of back pressure effects on marine diesel engine performance, and to identify limits of acceptable back pressure along with methods to tackle high back pressure. In this work, a pulse turbocharged, medium speed, diesel engine was tested at different loads and engine speeds; against different values of static back pressure. Additionally, mean value model simulations could be validated and were used to compare the performance of a pulse and constant pressure turbocharged engine against high back pressures of 1 meter water-column (mWC), and for two different values of valve overlap. Using the validated simulationmodel, the conceptual basis for the engine smoke limit aswell as for thermal overloading is investigated. A methodology applying the conceptual basis to define boundaries of acceptable back pressures has been presented in this paper. A combination of pulse turbocharger systems and small valve overlap showed to significantly improve back pressure handling capabilities of engines. 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
An Experimental Investigation of Diesel Engines Fuel Injection Pressure Effect on Power Performance and Fuel Consumption
The objective of this paper is to investigate the effect of fuel injection pressure on power performance and fuel consumption of diesel engine. In a diesel engine, fuel injection pressure is an important aspect of the engines’ power performance in order to obtain combustion treatment. The experiments in this paper are performed on a four-cylinder two-stroke direct injection diesel engine. The d...
متن کاملEffect of Direct Injection Diesel Engine Convert to Sequential Injection CNG Engine in Intake Port Gas Flow Pressure Profile
The one dimension computational model of a sequential injection engine, which runs on compressed natural gas (CNG) with spark ignition, is developed for this study, to simulate the performance of gas flow pressure profile, under various speed conditions. The computational model is used to simulate and study of the steady state and transient processes of the intake manifold. The sequential injec...
متن کاملTwo Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine
Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...
متن کاملConversion of Diesel Engine to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review
This paper is the representation of the computational and experimental methods of a new injector nozzle for a sequential port injection CNG engine. The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Next, a simulation of the fuel flow of the new injector nozzle was made using FLU...
متن کاملDevelopment of balance shaft and flywheel for single cylinder diesel engine based on analytical approach and comparison with the simulation result
Vibration is a key factor of abrasion and destruction in the internal combustion engine. In internal combustion engines, the main causes of vibration is combustion pressure, connecting rod weight, piston weight and inertial forces. This vibration create corrosion and fracture in main part of engine such as crankshaft, camshaft and cylinder block in long time. This corrosion and fracture is effe...
متن کامل